
UNIT I

INTRODUCTION

Software is more than just a program code. A program is an executable code, which serves some

computational purpose. Software is considered to be collection of executable programming code,

associated libraries and documentations.

Software Engineering is an engineering branch associated with development of software

product using well-defined scientific principles, methods and procedures.

 Software Engineering process Paradigms (SDLC)

SDLC: SDLC is a step by step procedure or systematic approach to develop software and it is followed within a

software organization. It consists of various phases which describe how to design, develop, enhance and maintain

particular software.

Phase 1: Requirement collection and analysis:

In this phase mainly focus on gathering the business needs from the customer. Business Analyst collects the

requirement from the customer and prepares the BRS (Business Requirement Specification) which has the

requirement in the business form. Then a group of people sits together and determines the requirements like;

What should be input data to the system?

Who is going to use the system?

 What should be output data by the system?

These questions are getting answered during this phase. After this, a Requirement Specification document is created

which gives the guideline for the upcoming phase of the model.

Phase 2: Feasibility study:

Once the BRS document is completed, a set of people like Human Resource department, Finance department,

Business analyst, Architect and Project manager are sit together and analyze if the project is do able or not. This

decision is taken based on the cost, time, resources and etc.

Phase 3: Design:

In this phase system design specification is prepared from the requirement document. Design is a blue print of the

application and it helps in specifying hardware and requirements of the system and helps in defining architecture of

the system

Phase 4: Coding:

Once the system design document is ready, in this phase developer’s starts writing the code using any programming

language i.e., they start developing the software. Generally task is divided in units or modules and assigned to the

developers and this coding phase is the longest phase of SDLC.

Phase 5: Testing:

Once the software is ready and is deployed in the testing environment, test engineers starts testing, if the functionality

of an application is working according to requirement or not. During this phase test engineers may encounter some

bugs/defects which need to be sent to developers, the developers fix the bug and sent back to test engineers for testing.

This process continuous until the software is bug free/stable/working according to the requirement.

Phase 6: Installation/Deployment:

Once the product developed, tested and works according to the requirement it is installed / deployed at customer place

for their use.

Phase 7: Maintenance:

When the customers starts using the software they may face some issues and needs to be solved, to fix those issue,

tested and handed over back to the customer as soon as possible, which is done in the maintenance phase.

Waterfall Model

The Waterfall Model was the first Process Model to be introduced. It is also referred to as

a linear-sequential life cycle model. It is very simple to understand and use. In a waterfall

model, each phase must be completed before the next phase can begin and there is no

overlapping in the phases.

Waterfall Model - Design

In "The Waterfall" approach, the whole process of software development is divided into

separate phases. In this Waterfall model, typically, the outcome of one phase acts as the input

for the next phase sequentially.

The following illustration is a representation of the different phases of the Waterfall Model.

The sequential phases in Waterfall model are –

 Requirement Gathering and analysis − All possible requirements of the system to be

developed are captured in this phase and documented in a requirement specification

document.

 System Design − The requirement specifications from first phase are studied in this

phase and the system design is prepared. This system design helps in specifying

hardware and system requirements and helps in defining the overall system architecture.

 Implementation − With inputs from the system design, the system is first developed in

small programs called units, which are integrated in the next phase. Each unit is

developed and tested for its functionality, which is referred to as Unit Testing.

 Integration and Testing − All the units developed in the implementation phase are

integrated into a system after testing of each unit. Post integration the entire system is

tested for any faults and failures.

 Deployment of system − Once the functional and non-functional testing is done; the

product is deployed in the customer environment or released into the market.

 Maintenance − There are some issues which come up in the client environment. To fix

those issues, patches are released. Also to enhance the product some better versions are

released. Maintenance is done to deliver these changes in the customer environment.

Waterfall Model – Advantages

 Simple and easy to understand and use

 Phases are processed and completed one at a time.

 Works well for smaller projects where requirements are very well understood.

 Clearly defined stages.

 Easy to arrange tasks.

Waterfall Model – Disadvantages

 No working software is produced until late during the life cycle.

 High amounts of risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 It is difficult to measure progress within stages.

Iterative Model:

1. Planning Phase: This is the first stage of the iterative model, where proper planning is

done by the team, which helps them in mapping out the specifications documents,

establish software or hardware requirements and generally prepare for the upcoming

stages of the cycle.

2. Analysis and Design Phase: Once the planning is complete for the cycle, an analysis is

performed to point out the appropriate business logic, database models and to know any

other requirements of this particular stage. Moreover, the design stage also occurs in this

phase of iterative model, where the technical requirements are established that will be

utilized in order to meet the need of analysis stage.

3. Implementation Phase: This is the third and the most important phase of the iterative

model. Here, the actual implementation and coding process is executed. All planning,

specification, and design documents up to this point are coded and implemented into this

initial iteration of the project.

4. Testing Phase: After the current build iteration is coded and implemented, testing is

initiated in the cycle to identify and locate any potential bugs or issues that may have

been in the software.

5. Evaluation Phase: The final phase of the Iterative life cycle is the evaluation phase,

where the entire team along with the client, examine the status of the project and validate

whether it is as per the suggested requirements.

Advantages of Iterative Model:

 It is easily adaptable to the ever changing needs of the project as well as the client.

 It is more cost effective to change the scope or requirements in Iterative model.

 Parallel development can be planned.

 Testing and debugging during smaller iteration is easy.

 Risks are identified and resolved during iteration; and each iteration is an easily managed.

 In iterative model less time is spent on documenting and more time is given for

designing.

Disadvantages of Iterative Model:

 More resources may be required.

 More management attention is required.

 It is not suitable for smaller projects.

 Highly skilled resources are required for skill analysis.

 Project progress is highly dependent upon the risk analysis phase.

Spiral Model

Spiral model is a combination of sequential and prototype model. This model is best used for

large projects which involves continuous enhancements. There are specific activities which are

done in one iteration (spiral) where the output is a small prototype of the large software. The

same activities are then repeated for all the spirals till the entire software is build. A spiral

model has 4 phases described below:

1. Planning phase

2. Risk analysis phase

3. Engineering phase

4. Evaluation phase.

Activities which are performed in the spiral model phases are shown below:

Phase

Name
Activities performed Deliverables / Output

Planning -Requirements are studied and gathered.

- Feasibility study

- Reviews and walkthroughs to streamline the

requirements

Requirements understanding document

Finalized list of requirements.

Risk

Analysis

Requirements are studied and brain storming sessions

are done to identify the potential risks

Once the risks are identified , risk mitigation strategy is

planned and finalized

Document which highlights all the risk &

its mitigation plans.

Engineering Actual development and testing if the software takes

place in this phase

Code

Test cases and test results

Test summary report and defect report.

Evaluation Customers evaluate the software and provide their

feedback and approval

Features implemented document

Advantages of using Spiral Model:

 Development is fast

 Larger projects / software are created and handled in a strategic way

 Risk evaluation is proper.

 More and more features are added in a systematic way.

 Software is produced early.

Disadvantages of using Spiral model:

 Risk analysis is important phase so requires expert people.

 Is not beneficial for smaller projects.

 Spiral may go infinitely.

 Documentation is more as it has intermediate phases.

 It is costly for smaller projects.

V-Model

The V-model is an SDLC model where execution of processes happens in a sequential manner

in a V-shape. It is also known as Verification and Validation model.

The following illustration depicts the different phases in a V-Model of the SDLC.

V-Model - Verification Phases

There are several Verification phases in the V-Model, each of these are explained in detail

below.

Business Requirement Analysis

This phase involves detailed communication with the customer to understand expectations and

exact requirement. The acceptance test design planning is done at this stage as business

requirements can be used as an input for acceptance testing.

System Design

The system design will have the understanding and detailing the complete hardware and

communication setup for the product under development. The system test plan is developed

based on the system design.

Architectural Design: Architectural specifications are understood and designed in this phase.

Usually more than one technical approach is proposed and based on the technical and financial

feasibility the final decision is taken. The system design is broken down further into modules

taking up different functionality. This is also referred to as High Level Design (HLD).

Module Design

In this phase, the detailed internal design for all the system modules is specified, referred to

as Low Level Design (LLD). It is important that the design is compatible with the other

modules in the system architecture and the other external systems. The unit tests are an essential

part of any development process and helps eliminate the maximum faults and errors at a very

early stage. These unit tests can be designed at this stage based on the internal module designs.

Coding Phase

The coding is performed based on the coding guidelines and standards. The code goes through

numerous code reviews and is optimized for best performance before the final build is checked

into the repository.

Validation Phases

The different Validation Phases in a V-Model are explained in detail below.

Unit Testing

 Unit testing is the testing at code level and helps eliminate bugs at an early stage, though all

defects cannot be uncovered by unit testing.

Integration Testing

Integration testing is associated with the architectural design phase.

System Testing

System tests check the entire system functionality and the communication of the system under

development with external systems.

Acceptance Testing

Acceptance tests uncover the compatibility issues with the other systems available in the user

environment.

The advantages of the V-Mode l method are as follows −

 This is a highly-disciplined model and Phases are completed one at a time.

 Works well for smaller projects where requirements are very well understood.

 Simple and easy to understand and use.

The disadvantages of the V-Model method are as follows −

 High risk and uncertainty.

 Not a good model for complex and object-oriented projects.

 Poor model for long and ongoing projects.

 Not suitable for the projects where requirements are at a moderate to high risk of

changing.

Project Management Concepts (Or) Spectrum

- The People

- The Product (or) problem

- The Process

- The Project

The People: The Stakeholders

 Four categories of stakeholders

– Senior managers – define business issues that often have significant influence on the project.

– Project (technical) managers – plan, motivate, organize, and control the practitioners who do the

work.

– Customers – specify the requirements for the software engineer.

– Users – interact with the software once it is released for production use

The People: Team Leaders

• Team leaders should use a problem-solving management style.

– Concentrate on understanding the problem to be solved

– Manage the flow of ideas.

The People: The Software Team

The People: Coordination and Communication Issues

Documents, Milestones, Memos, Review Meetings, Inspections , Information Meetings, Problem Solving ,E-

Mail, Bulletin Boards, Video Conferencing ,Discussion With People Outside Project Team

The Product

• The scope of the software development must be established and bounded

– Context – How does the software to be built fit into a larger system? And what constraints are

imposed as a result of the context?

– Information objectives – What customer-visible data objects are produced as output from the

software? What data objects are required for input?

– Function and performance – What functions does the software perform to transform input

data into output? Are there any special performance characteristics to be addressed?

The Process

 The project manager must decide which process model is most appropriate based on framework activities.

• Customer communication

• Planning

• Risk analysis

• Engineering

• Customer evaluation

Once a process model is selected, a preliminary project plan is established based on the process framework

activities.

The Project

 Defining and setting up project scope

 Managing project management activities

 Monitoring progress and performance

 Risk analysis at every phase

 Take necessary step to avoid or come out of problems

Process and Project metrics

Measure, Metrics, Indicators

• Measure.

– Provides a quantitative indication of the amount, dimension, capacity, or size of some attributes

of a product or process.

 MetricsRelates the individual measures in some way.(quantitative measure of the degree to which a

system i.e, The goal of software metrics is to identify and control essential parameters that affect

software development.)

• Indicator.

– These indicators provide a detailed insight into the software process, software project, or

intermediate product. Indicators also enable software engineers or project managers to adjust

software processes and improve software products, if required.

 Process and project Indicator

 Process Indicator

 Process Indicators are collected across all projects and over long periods of time. Their intent is to

provide indicators that lead to long term software process improvement.

 Project Indicator

 Enables a software project manager to

1) Assess the status of an ongoing project

2) Track potential risks.

3) Uncover problem areas before they go “Critical”

4) Adjust work flow or tasks

5) Evaluate the project team’s ability to control quality of software work products.

 Process Metrics and Software Process Improvement

Factors that influence quality:

– people - skills and experience of SW people

– technology - used in development (e.g. CASE)

– product complexity

Types of process metrics:

 Private &. public metrics

SW process improvement should begin at the individual level

Private metrics:

 defect rates by individual

 defect rates by module

 errors found during development

Public metrics:

 Use information from individual and team metrics

 Some public metrics:

 project-level defect rates

 effort

 Calendar times

 Software Measurement

 Categories in 2 ways:

 Direct measure of the software process & Product

 E.g. Lines of code (LOC), execution speed, and defect)

 Indirect measures of the product that includes functionality, complexity, efficiency, reliability,

maintainability etc.

 Size Oriented Metrics

 Size-oriented software metrics are derived by normalizing quality and/or productivity measures by

considering the size of the software that has been produced. A set of simple size-oriented metrics can be

developed for each project: Errors per KLOC (thousand lines of code). Defects4 per KLOC.

Size-oriented metrics measures on LOC as normalization value.

 Errors per KLOC (thousand lines of code)

 Defects per KLOC

 $ per LOC

 Pages of documentation per KLOC

Function-Oriented Metrics

 It uses a measure of functionality delivered by the application as a normalization value.

 Function Point (FP) is widely used as function oriented metrics.

 FP derived using an empirical relationship based on countable (direct) measures of software’s

information domain and assessments of software complexity.

 FP is based on characteristic of Software information domain and complexity.

complexity multiplier

function points

number of user inputs

number of user outputs

number of user inquiries

number of files

number of ext.interfaces

measurement parameter

3

4

3

7

5

count
weighting factor

simple avg. complex

4

5

4

10

7

6

7

6

15

10

=

=

=

=

=

count-total

X

X

X

X

X

Number of user inputs

 Each unique user input that provides application-oriented data to the SW.

Number of user outputs

 Each user output that provides application-oriented information to user (reports, screens, error messages, etc.).

Number of inquiries

 Inquiry is an on-line input that results in generation of an immediate SW response in form of an on-line output.

Number of internal files

 Include each logical file or if using a DB, logical grouping of data, that is generated, used and maintained by the

application.

Number of external interfaces

 Files passed or shared between applications should be counted.

 Compute: the function points calculation

 FP= count-total * [0.65+.01* Fi]

Reconciling LOC and FP metric:

 Relationship between lines of code and function points depends upon the programming language that is

used to implement the software and the quality of the design.

 Following table provides rough estimates of the average number of LOC required to build one FP in

various programming languages:

Metrics for SW Quality

 Focus on the process, the project and the product (as do productivity metrics)

Factors that affect quality

 product operation - using it

 product revision - changing it

 product transition - portability

Measuring quality:

 correctness

 degree to which SW performs its required function

 Defects per KLOC - most common measure for correctness.

 Maintainability.

 Ease with which a program can be corrected, adapted, or enhanced.

 MTTC - mean time to change -

 Simple metric - time it takes to analyze, implement change, test it, and distribute it to users.

 Integrity

– Measures system’s ability to withstand attacks on its security.

 Usability

– Quantify user friendliness.

Defect Removal Efficiency(DRE)

• Defect removal efficiency provides benefits at both the project and process level.

• It is a measure of the filtering ability of QA activities as they are applied throughout all process

framework activities.

– It indicates the percentage of software errors found before software release.

• It is defined as DRE = E / (E + D).

– E is the number of errors found before delivery of the software to the end user.

 -- D is the number of defects found after delivery.

SOFTWARE PROJECT ESTIMATION

Estimation is the process of finding an estimate, or approximation, which is a value that can be used for some

purpose even if input data may be incomplete, uncertain, or unstable.

Estimation determines how much money, effort, resources, and time it will take to build a specific system or

product. Estimation is based on −

 Past Data/Past Experience

 Available Documents/Knowledge

 Assumptions

 Identified Risks

Estimation need not be a one-time task in a project. It can take place during −

o Acquiring a Project.

o Planning the Project.

o Execution of the Project as the need arises.

Project Estimation Approach

The Project Estimation Approach that is widely used is Decomposition Technique. Decomposition techniques

take a divide and conquer approach. Size, Effort and Cost estimation are performed in a stepwise manner by

breaking down a Project into major Functions or related Software Engineering Activities.

Step 1 − Understand the scope of the software to be built.

Step 2 − Generate an estimate of the software size.

Step 3 − Generate an estimate of the effort and cost. You can arrive at the effort and cost estimates by breaking

down a project into related software engineering activities.

Step 4 − Reconcile estimates: Compare the resulting values from Step 3 to those obtained from Step 2. If both sets

of estimates agree, then your numbers are highly reliable.

Step 5 − Determine the cause of divergence and then reconcile the estimates.

EMPERICAL ESTIMATION MODELS

The structure of empirical estimation models is a formula, derived from data collected from past software projects,

that uses software size to estimate effort. Size, itself, is an estimate, described as either lines of code (LOC) or

function points (FP). No estimation model is appropriate for all development environments, development

processes, or application types. Models must be customised (values in the formula must be altered) so that results

from the model agree with the data from the particular environment.

The typical formula of estimation models is: E = a + b(S)c

where;

 E represents effort, in person months,

S is the size of the software development, in LOC or FP, and,

a, b, and c are values derived from data

COCOMO: When Barry Boehm wrote 'Software Engineering Economics', published in 1981, he introduced an

empirical effort estimation model (COCOMO - COnstructive COst MOdel) that is still referenced by the software

engineering community. The model has been reviewed since 1981 and details of the revised and updated

COCOMO 2 model.

The original COCOMO model was a set of models; 3 development modes (organic, semi-detached, and

embedded) and 3 levels (basic, intermediate, and advanced). COCOMO model levels:

Basic - predicted software size (lines of code) was used to estimate development effort.

 Intermediate - predicted software size (lines of code), plus a set of 15 subjectively assessed 'cost drivers' was

used to estimate development effort

Advanced - on top of the intermediate model, the advanced model allows phase-based cost driver adjustments

and some adjustments at the module, component, and system level.

COCOMO development models:

Organic - small relatively small, simple software projects in which small teams with good application experience

work to a set of flexible requirements.

 Embedded - the software project has tight software, hardware and operational constraints.

 Semi-detached – an intermediate (in size and complexity) software project in which teams with mixed

experience levels must meet a mix of rigid and less than rigid requirements.

Example1: Suppose a project was estimated to be 400 KLOC. Calculate the effort and development time for

each of the three model i.e., organic, semi-detached & embedded.

Solution: The basic COCOMO equation takes the form:

Effort=a1*(KLOC) a2 PM

 Tdev=b1*(efforts)b2 Months

 Estimated Size of project= 400 KLOC

(i)Organic Mode

 E = 2.4 * (400)1.05 = 1295.31 PM

 D = 2.5 * (1295.31)0.38=38.07 PM

(ii)Semidetached Mode

 E = 3.0 * (400)1.12=2462.79 PM

 D = 2.5 * (2462.79)0.35=38.45 PM

(iii) Embedded Mode

 E = 3.6 * (400)1.20 = 4772.81 PM

 D = 2.5 * (4772.8)0.32 = 38 PM

Project Planning

The project plan sets out the resources available about to the project, the work breakdown and a schedule

for carrying out the work.

Most plans should include the following sections:

1. Introduction: This briefly describes the objectives of the project and sets out the constraints (Eg:

budget, time etc) which affect the project management.

2. Project Organisation: This describes the way in which the development team is organized, the

people involved and their roles in the team.

3. Risk analysis: This describes possible project risks, the likelihood of these risks arising and the

risk reduction strategies, which are proposed.

4. Hardware and Software resource Requirements : This describes the hardware and the

support software required to carry out the development .

5. Work Breakdown : This describes the breakdown of the project into activities and identifies

the milestones ans deliverables associated with each activity.

6. Project Schedule: This describes the dependencies between activities , the estimated time

required to reach each milestone and the allocation of people to the activities.

7. Monitoring and reporting mechanism : This describes the management reports which

should be produced , when these should be produced and the project monitoring mechanisms

used.

Risk Management

Risk Management can be defined as follows:

 Project risks: are risk s which are affect the project schedule or resources.

 Product risks: are risks which are affect the quality or performance of the software being developed.

 Business Risks : are risks which affect the organization developing or procuring the software.

The process of risk management is involves in several stages:

1. Risk identification: Possible project, product and business risks are identified.

2. Risk Analysis: The likelihood and consequences of these risks are assessed.

3. Risk Planning : Plans to address the risk either by avoiding it or minimizing its effects on the project are

drawn up.

4. Risk Monitoring : The risk is constantly assessed and plans for risks mitigation are revised as more

information about risk becomes available.

1 . Risk Identification: This is the first stage of risk management. These types include

 Technology risks: Risks which are defines from the software or Hardware technologies

 People risks: Risks which are associated with the people in the development team.

 Organisational risks : Risks which are derive from the organizational environment where software is

being developed.

 Tool risks: Risks which derive from the CASE tools and other support software used to develop the

system.

 Requirement risks: Risks which are derive from changes to the customer’s requirements and the

process of managing the requirements change.

 Estimation risks: Risks which are derive from the management estimates of the system characteristics

and the resources required to build the system.

2. Risk Analysis: During this risk analysis process, each identified risk is considered in turn and a judgment made

about the probability and the seriousness of the risk..

Once the risks have been analyzed and ranked , a judgment must then be made about which are the most

important risks which are the most important risks which must be considered during the project.

3. Risk Planning: These strategies fall into three categories:

 Avoidance strategies : The probability that the risk will arise will be reduced.

 Minimization strategies : The impact of the risk will reduced.

 Contingency plans : If the worst happens , prepared for it and have a strategy in place to deal with it.

4. Risk Monitoring : It involves regularly assessing each of the identified risks to decide whether or not that risk

is becoming more or less probable and whether the effects of the risk have changed.

 Risk monitoring should be a continuous process and, at every management progress review , each of the

key risk should be considered separately and discussed by the meeting.

Project Scheduling:

Project scheduling involves separating the total work involved in a project into separate and judging the time

required to complete these activities. Usually, some of these activities are carried out in parallel.

In estimating schedules , managers should not assume that every stage of the project will be problem free.

Two project scheduling methods:

 - Program Evaluation and Review Technique (PERT) is a project management tool used to schedule,

organize, and coordinate tasks within a project. It is basically a method to analyze the tasks involved in completing

a given project, especially the time needed to complete each task, and to identify the minimum time needed to

complete the total project.

 - Critical Path Method (CPM) is an algorithm for scheduling a set of project activities. It is commonly

used in conjunction with the program evaluation and review technique (PERT).

Both methods are driven by information developed in earlier project planning activities:

 - Estimates of effort.

 - A decomposition of product function.

 - The selection of the appropriate process model.

 - The selection of project type and task set.

Timeline Charts (Gantt charts)

 Timeline charts, or also called Gantt charts, are developed for the entire project, for tracking and control of

all activities that need to be performed for project development.

The timeline chart is a kind of a table with the following fields:

- The left hand column contains the project tasks

- The horizontal bars indicate the duration of each task

- The diamonds indicate milestones

Tracking the Schedule

 The project schedule provides a road map for a software project manager. It defines the tasks

and milestones.

 Several ways to track a project schedule:

 - conducting periodic project status meeting.

 - evaluating the review results in the software process.

 - determine if formal project milestones have been.

 - compare actual start date to planned start date for each task.

 - Informal meeting with practitioners.

 Project manager takes the control of the schedule in the aspects of:

 - project staffing - Project problems

 - Project resources - Reviews - Project budget
